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We ask what type of mixed quantum states can arise when a number of separated parties start by
sharing a pure quantum state and then this pure state becomes contaminated by noise. We show that not
all mixed states arise in this way. This is even the case if the separated parties actively try to degrade
their initial pure state by arbitrary local actions and classical communication.
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Density matrices and the question of their entanglement
have been studied very intensively during the last few years
[1]. However, the question of how these density matrices
arise in the first place has received much less attention. It
has been tacitly assumed that density matrices arise when
a number of parties, separated in space, start by sharing a
pure state, and then this state gets contaminated by noise,
due to interaction with the environment. Is it the case that
any density matrix can be obtained in this way? Surpris-
ingly we show that the answer is no.

The point is that, in the above scenario, the very fact that
we can talk about separated parties means that the noise is
local. This imposes constraints as to how entangled states
may be degraded by the environment. We study here the
effects of these constraints.

We consider two different situations. The first is where
we consider a pure state shared by the parties which is
contaminated by local noise; this is a typical situation of
obvious physical significance. We refer to states which can
be produced from pure states by local contamination as LC
states. The second situation is one in which the parties ac-
tively try to degrade the pure state: in addition to local
noise we allow local measurements and classical commu-
nication between the parties. We refer to states which can
be produced from pure states by local contamination and
classical communication as LCCC states.

We emphasize that in both situations, when we wish to
get a density matrix of a given number of parties each with
a given dimension of local Hilbert space, we are interested
in the physically significant situation that the precursor
pure states lie in a system Hilbert space of the same local
dimensions. For example, if we wish to generate a density
matrix of three spin-1�2 particles we start with a pure state
of three spin-1�2 particles. Without this restriction we can
defeat the point of the exercise in a trivial way, losing sight
of the physical significance [2].

The specific question we address is: Given a general
“target” density matrix, can we find a pure state from which
this density matrix can be obtained by local contamination,
in either situation? We show that generically, in both situ-
ations, the answer is no.
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In a sense, density matrices which can be obtained by
local contamination are simple in that their entanglement
properties are simply related to those of their pure state
precursor. The density matrices which cannot be obtained
in this way have a more subtle and complex structure.

Let us first discuss the situation in which no classical
communication is allowed. We consider n separated par-
ties each of which has a d-level system. The number of
real parameters describing pure states is 2dn 2 2, and the
number describing general mixed states is d2n 2 1. The
fact that it is not possible to reach an arbitrary target den-
sity matrix by degrading any pure state follows simply
from the fact that the number of parameters describing lo-
cal degrading is linear in n. Thus, for sufficiently large n,
the number of parameters describing density matrices will
be larger than the number describing pure states and local
contamination.

In order to see how large n needs to be we need to calcu-
late the number of parameters describing the set of general
local transformations. The most general interaction of a
d-level system with its environment is as follows [3]:

ji�Sj0�E � ji0�SE �
X

j

j j�S jeij�E , (1)

where ji�S are an orthonormal basis for the states of the
system and jeij�E are d2 arbitrary (i.e., not necessarily nor-
malized or orthogonal) states of the environment. It is only
the norms and overlaps of the jeij�E which are important
and there are d4 real parameters describing these. In fact,
the number of parameters describing the local degradation
is less than d4 since the d2 environment states satisfy d2

conditions arising from the fact the original states of the
system ji�S are an orthonormal basis.

Thus the total number of real parameters describing all
pure states plus the number describing the local contami-
nation is at most

2dn 2 2 1 n�d4 2 d2� . (2)

This number is to be compared to the number of parameters
describing density matrices of n d-level systems, namely,
d2n 2 1.
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In fact, the number of parameters describing LC states
will be less than (2), since some of the transformations
included in (1) for a given party will transform pure states
to pure states and so are double counted in (2). However,
for the purposes of this Letter, we require only an upper
bound and rate of growth with n and d of the number of
parameters describing LC states and so (2) is adequate.

The above calculations show that for n . 2 not all den-
sity matrices can be produced by local contamination of
pure states (i.e., not all states are LC states). Specific ex-
amples are given below. We also note that in the limit
of large n we may say that the dimension of LC states is
essentially the same as that of pure states, at least when
compared to the dimension of the space of all states. Put
another way, for large n, the space of LC states is expo-
nentially smaller than the space of all mixed states.

However, it is worth noting that for n equal to two, the
rate of growth of the number of parameters describing local
contamination is d4, as is the rate of growth of the number
of parameters describing density matrices. It would be in-
teresting to know whether every density of two d-level sys-
tems can arise as the result of local contamination of pure
states. Note that, in order for it to be possible to reach an
arbitrary target density matrix by local contamination of a
pure state, it is necessary that the number of parameters de-
scribing pure states plus contamination be greater than or
equal to that describing density matrices. However, even
if parameter counting allows it, this does not guarantee
that it is indeed possible to reach an arbitrary target den-
sity matrix; a more refined analysis is required to deter-
mine this.

We now turn to the situation where the parties actively
try to produce a target density matrix; in other words, we
allow measurements and classical communication. Our ar-
guments will not rely on the counting of parameters which
is much more subtle here. To see that there is an issue,
consider the simple case of two d-level systems. We can
easily show that using classical communication and local
operations, Alice and Bob can produce an arbitrary density
matrix. Let us write the target density matrix as a mixture
of (typically entangled) pure states jcm�:

r �
X

m

pmjcm� �cmj . (3)

This state may be produced by the following protocol. Al-
ice and Bob start with a maximally entangled state; we use
this pure state as the precursor for all target mixed states.
We then simply note that any of the pure states jcm� can
be produced with probability one from the maximally en-
tangled state by coordinated actions by Alice and Bob [4].
Thus, to produce r, Alice uses a random variable to pro-
duce an outcome m with probability pm; she communicates
the value she receives to Bob; when they get the value m

they then perform the protocol to produce jcm� with proba-
bility one from the maximally mixed state. Thus, overall
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they have produced the required density matrix r. An op-
timized protocol, in the sense of using less entanglement,
has been given recently by Vidal [5].

Thus with classical communication Alice and Bob can
produce any density matrix of two d-level systems (i.e., ev-
ery two-party state is LCCC). However, as we now show,
for more parties, in general, even with classical commu-
nication, not every density matrix arises as the local con-
tamination of a pure state. Consider the following state of
three qubits:

Z � pjW� �Wj 1 �1 2 p� jGHZ� �GHZj , (4)

where jW� �
1
p

3
�j001� 1 j010� 1 j100�� is the state

defined in [6] and jGHZ� �
1
p

2
�j000� 1 j111�� is the

Greenberger-Horne-Zeilinger state [7]. Purifications of
this state have the form

jC� �
p

p jW� jf1� 1
p

1 2 p jGHZ� jf2� , (5)

where jf1� and jf2� are orthonormal states of the three
ancillas (at this stage we have made no restrictions about
these states; they might be entangled states of the three
local ancilla Hilbert spaces). If it were possible to create
the mixture by local degradation of a pure state then there
must be a pure state jF�, such that adding local ancillas
and evolving with local unitaries achieves the following
transformation:

jF� j0� !
p

p jW� jf1� 1
p

1 2 p jGHZ� jf2� . (6)

Since jf1� and jf2� are orthogonal, these two states may
be distinguished with certainty using only local operations
and classical communication [8]. Thus doing the mea-
surement which distinguishes jf1� from jf2� collapses the
state onto jW� or jGHZ� thus giving some nonzero proba-
bility of creating either jW� or jGHZ� by LOCC starting
with jF�. However, it has been shown that the three-party
states which may be converted with some probability into
a jGHZ� state by LOCC and those which may be converted
into a jW� state form two disjoint classes [6]. Therefore
we have a contradiction and so it is impossible to make the
mixture r in this way.

Our arguments apply equally well to any state of
the form (4) where instead of jW� we have any state in
the jW� class and instead of jGHZ� we have any state in the
jGHZ� class. In general, for larger numbers of particles,
there may be a number of nontrivial inequivalent classes
of entangled pure states, and we can produce non-LCCC
states in a similar way. However, the above argument will
generalize only for mixtures of two different inequivalent
pure states. This is because it has only been shown that
two orthogonal states can be locally distinguished with
certainty. Locally distinguishing more than two states
may require the use of more copies [8].

The details of what happens in the case of more par-
ties and higher spins remain to be worked out, although
the general messages should be clear. In the case of no
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classical communication, typical density matrices cannot
be produced by local contamination of pure states. In the
case where we allow classical communication, it is cer-
tainly the case that any mixture of two pure states falling
into disjoint classes (as with jW� and jGHZ� in the case of
three qubits) will give rise to a “complex” density matrix
(i.e., one which cannot be formed by local contamination
of a pure state). This is a particular method for construct-
ing non-LCCC density matrices; we suspect that there are
many other interesting classes of non-LCCC states.

The main goal of this Letter is to raise the question
of how density matrices can arise. Once the question is
raised, many other interesting issues suggest themselves.
The first obvious one is to find a method for charac-
terizing whether a given mixed state is LC or LCCC.
More generally we desire to understand how the space
of all states decomposes into classes of states which are
accessible from each other by local degrading (with or
without classical communication). We also desire to char-
acterize these classes by their entanglement properties and
assess their physical implications. Finally, the fact that
noise takes pure states only into a limited range of mixed
states, rather than to the whole space of mixed states (of
exponentially larger dimensionality), offers a new perspec-
tive on quantum error correction [9].
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