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Information, Relative Entropy of Entanglement, and Irreversibility
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Previously proposed measures of entanglement, such as entanglement of formation and assistance, are
shown to be special cases of the relative entropy of entanglement. The difference between these measures
for an ensemble of mixed states is shown to depend on the availability of classical information about
particular members of the ensemble. Based on this, relations between relative entropy of entanglement
and mutual information are derived.
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In quantifying entanglement, a number of measures have
been proposed. For bipartite pure states, rAB, the Von
Neumann entropy of the reduced density matrix of either
subsystem, rA or rB, has been found to be a good and
unique measure [1,2]. Relative entropy of entanglement
has been proposed as a measure which extends to mixed
states [3,4]. Loosely speaking, it quantifies how “far” an
entangled state is from the set of disentangled states. En-
tanglement of mixed states has also been characterized by
the “entanglement of formation,” and by the “entangle-
ment of distillation” [5]. Rather surprisingly, use of en-
tanglement in mixed states is not reversible in the sense
that all the entanglement required to construct a particular
mixed state cannot be distilled out again, so the entangle-
ment of formation is greater than the entanglement of dis-
tillation [4]. In this Letter, we clarify the role of classical
information about the identity of particular members of an
ensemble of mixed states, and show that the loss of such
information is responsible for the difference between the
entanglement of formation and the entanglement of distil-
lation. We provide a unifying framework for entanglement
measures by showing how previously proposed measures
are special cases of the relative entropy of entanglement.
This gives a strong physical argument for using quantum
relative entropy as a unique way to understand entangle-
ment in general.

Suppose that Alice and Bob share a state described by
the density matrix rAB. The state rAB has an infinite
number of different decompositions ´ � �jc i

AB� �c i
ABj, pi�,

into pure states jc i
AB�, with probabilities pi [6]. We denote

the mixed state rAB written in decomposition ´ by

r´
AB �

X

i

pijc
i
AB� �c i

ABj . (1)

Measures of entanglement are associated with formation
and distillation of pure and mixed entangled states [1,5].
The basis of formation is that Alice and Bob would like
to create an ensemble of n copies of the nonmaximally
entangled state, rAB, using only local operations, clas-
sical communication, and a number, m, of maximally
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entangled pairs. It is customary to assume that the only
“cost” in communication is due to the use of entangle-
ment resources, or sending information down a quantum
channel, while classical communication costs nothing.
Entanglement of formation is the asymptotic conversion
ratio, m

n , in the limit of infinitely many copies. It is given
by the average entanglement of the pure states, minimized
over all decompositions, EF�rAB� � min´

P
i piS�r

i
B�,

where r
i
B is the reduced density matrix for subsystem A of

the pure state jc
i
AB� �c i

ABj. Distillation is the reverse pro-
cess, where Alice and Bob share an ensemble of n copies
of the nonmaximally entangled state, rAB, and would like
to extract the largest number of maximally entangled pairs
using only local operations and classical communications.
The entanglement of distillation, ED�rAB�, is the number
of maximally entangled singlets per copy of rAB which
can be distilled from an asymptotically large ensemble
of copies.

Relative entropy of entanglement of the mixed state
is defined as ERE�rAB� � minsAB[D S�rABjjsAB�, where
S�rjjs� � Tr�r logr 2 r logs� is the quantum relative
entropy [4]. The minimum is taken over D, the set of
completely disentangled or “separable” states. A state is
separable if it can be written as a convex combination of
product states s �

P
i pis

i
A ≠ s

i
B, with

P
i pi � 1. The

relative entropy of entanglement provides an upper bound
for the distillable entanglement [4]. The known relation-
ships between the different measures of entanglement for
mixed states are ED�rAB� # ERE�rAB� # EF�rAB� [4].
Equality holds for pure states, where all the measures re-
duce to the Von Neumann entropy, S�rA� � S�rB�.

Formation of an ensemble of n nonmaximally entan-
gled pure states, rAB � jcAB� �cABj, is achieved by the
following protocol. Alice first prepares the states she
would like to share with Bob locally. She then uses
Schumacher compression [7] to compress subsystem
B into nS�rB� states. Subsystem B is then teleported
to Bob using nS�rB� maximally entangled pairs. Bob
decompresses the states he receives and so ends up
sharing n copies of rAB with Alice. The entanglement of
formation is therefore EF�rAB� � S�rB�. For pure states,
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this process requires no classical communication in the
asymptotic limit [8]. The reverse process of distillation is
accomplished using the Schmidt projection method [1],
which allows nS�rB� maximally entangled pairs to be
distilled in the limit as n becomes very large. No classical
communication between the separated parties is required.
Therefore pure states are fully interconvertible in the
asymptotic limit.

The situation for mixed states is more complex. When
any mixed state, denoted by Eq. (1), is created, it may be
imagined to be part of an extended system whose state
is pure. The pure states jc

i
AB� in the mixture may be re-

garded as correlated to orthogonal states jmi� of a memory
M. The extended system is in the pure state jcMAB� �P

i
p

pi jmi� jc i
AB�. If we have no access to the memory

system, we trace over it to obtain the mixed state in Eq. (1).
In fact, the lack of access to the memory is of a completely
general nature. It may be due to interaction with another
inaccessible system, or it may be due to an intrinsic loss of
information. Our results are universally valid and do not
depend on the nature of the information loss. We will see
that the amount of entanglement involved in the different
entanglement manipulations of mixed states depends on
the accessibility of the information in the memory at dif-
ferent stages. Note that a unitary operation on jcMAB� will
convert it into another pure state jfMAB� with the same
entanglement, and tracing over the memory yields a dif-
ferent decomposition of the mixed state. Reduction of
the pure state to the mixed state may be regarded as due
to a projection-valued measurement on the memory with
operators �Ei � jmi� �mij�.

Consider first the protocol of formation by means of
which Alice and Bob come to share an ensemble of n
mixed states rAB. Alice first creates the mixed states lo-
cally by preparing a collection of n states in a particu-
lar decomposition, ´ � �jc i

AB� �c i
ABj, pi� by making npi

copies of each pure state jc
i
AB�. At the same time we may

imagine a memory system entangled to the pure states to
be generated, which keeps track of the identity of each
member of the ensemble. We consider first the case where
the state of subsystems A and B together with the mem-
ory is pure. Later, we will consider the situation in which
Alice’s memory is decohered. There are then three ways
for her to share these states with Bob. First of all, she may
simply compress subsystem B to nS�rB� states, and tele-
port these to Bob using nS�rB� maximally entangled pairs.
The choice of which subsystem to teleport is made so as
to minimize the amount of entanglement required, so that
S�rB� # S�rA�. The teleportation in this case would re-
quire no classical communication in the asymptotic limit,
just as for pure states [8]. The state of the whole system
which is created by this process is an ensemble of pure
states jcMAB�, where subsystems M and A are on Alice’s
side and subsystem B is on Bob’s side. In terms of entan-
glement resources, however, this process is not the most ef-
ficient way for Alice to send the states to Bob. She may do
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it more efficiently by using the memory system of jcMAB�
to identify blocks of npimembers in each pure state jc

i
AB�,

and applying compression to each block to give npiS�r
i
B�

states. Then the total number of maximally entangled pairs
required to teleport these states to Bob is n

P
i piS�r

i
B�,

which is clearly less than nS�rB�, by concavity of the en-
tropy. The amount of entanglement required clearly de-
pends on the decomposition of the mixed state rAB. In
order to decompress these states, Bob must also be able
to identify which members of the ensemble are in which
state. Therefore Alice must also send him the memory sys-
tem. She now has two options. She may either teleport the
memory to Bob, which would use more entanglement re-
sources. Or she may communicate the information in the
memory classically, with no further use of entanglement.
When Alice uses the minimum entanglement decomposi-
tion, ´ � �jc i

AB� �c i
ABj, pi�, this process, originally intro-

duced by Bennett et al. [5], makes the most efficient use
of entanglement, consuming only the entanglement of for-
mation of the mixed state, EF�rAB� �

P
i piS�r

i
B�. We

may think of the classical communication between Alice
and Bob in one of two equivalent ways. Either Alice may
measure the memory locally to decohere it, and then send
the result to Bob classically, or she may send the memory
through a completely decohering quantum channel. Since
Alice and Bob have no access to the channel, the state of
the whole system which is created by this process is the
mixed state

r´
ABM �

X

i

pijc
i
AB� �c i

ABj ≠ jmi� �mij , (2)

where Bob is classically correlated to the AB subsystem.
Bob is then able to decompress his states using the memory
to identify members of the ensemble.

Once the collection of n pairs is shared between Alice
and Bob, it is converted into an ensemble of n mixed states
rAB by destroying access to the memory which contains
the information about the state of any particular member
of the ensemble. It is the loss of this information which is
responsible for the fact that entanglement of distillation
is lower than entanglement of formation, since it is not
available to parties carrying out the distillation. (The
relation between classical information and distillable
entanglement was previously discussed by Eisert et al.
[9], in a different context.) If Alice and Bob, who
do have access to the memory, were to carry out the
distillation, they could obtain as much entanglement
from the ensemble as was required to form it. In the
case where Alice and Bob share an ensemble of the
pure state jcMAB�, they would simply apply the Schmidt
projection method [1]. The relative entropy of entangle-
ment gives the upper bound to distillable entanglement,
ERE�jc�MA�:B� �c�MA�:Bj� � S�rB�, which is the same
as the amount of entanglement required to create the
ensemble of pure states, as described above. Here MA
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and B are spatially separated subsystems on which joint
operations may not be performed. In our notation, we use
a colon to separate the local subsystems.

On the other hand, if Alice used the least entangle-
ment for producing an ensemble of the mixed state rAB,
together with classical communication, the state of the
whole system is an ensemble of the mixed state r

´
ABM ,

and the process is still reversible. Because of the classical
correlation to the states jc i

AB�, Alice and Bob may identify
blocks of members in each pure state jc

i
AB�, and apply

the Schmidt projection method to them, giving npiS�r
i
B�

maximally entangled pairs, and hence a total entanglement
of distillation of

P
i piS�r

i
B�. The relative entropy of

entanglement again quantifies the amount of distillable
entanglement from the state r

´
ABM and is given by

ERE�r
´
A:�BM�� � minsABM[D S�r

´
ABM jjsABM�. The dis-

entangled state which minimizes the relative entropy is
sABM �

P
i pis

i
AB ≠ jmi� �mij, where s

i
AB is obtained

from jc
i
AB� �c i

ABj by deleting the off-diagonal elements in
the Schmidt basis. This is the minimum because the state
rMAB is a mixture of the orthogonal states jmi� jc i

AB�,
and for a pure state jc

i
AB�, the disentangled state which

minimizes the relative entropy is s
i
AB. The minimum

relative entropy of the extended system is then

S�r´
ABM jjsABM� �

X

i

piS�ri
B� .

This relative entropy, ERE�r
´
A:�BM��, has previously been

called “entanglement of projection” [10], because the mea-
surement on the memory projects the pure state of the full
system into a particular decomposition. The minimum of
ERE�r

´
A:�BM�� over all decompositions is equal to the en-

tanglement of formation of rAB. However, Alice and Bob
may choose to create the state rAB by using a decompo-
sition with higher entanglement than the entanglement of
formation. The maximum of ERE�r

´
A:�BM�� over all pos-

sible decompositions is called the “entanglement of assis-
tance” of rAB [11]. Because ERE�r

´
A:�BM�� is a relative

entropy, it is invariant under local operations and nonin-
creasing under general operations, properties which are
conditions for a good measure of entanglement [4]. How-
ever, unlike ERE�rAB� and EF�rAB�, it is not zero for
completely disentangled states. In this sense, the rela-
tive entropy of entanglement, ERE�r

´
A:�BM��, defines a class

of entanglement measures interpolating between the en-
tanglement of formation and entanglement of assistance.
Note that an upper bound for the entanglement of as-
sistance, EA, can be shown using concavity [11] to be
EA�rAB� # min�S�rA�, S�rB�	. This bound can also be
shown from the fact that the distillable entanglement from
any decomposition, ERE�r

´
A:�BM�� # EA�rAB� cannot be

greater than the entanglement of the original pure state.
We may also derive relative entropy measures that in-

terpolate between the relative entropy of entanglement and
the entanglement of formation by considering nonorthogo-
nal measurements on the memory. First of all, the fact that
the entanglement of formation is in general greater than
the upper bound for entanglement of distillation, emerges
as a property of the relative entropy, namely, that it cannot
increase under the local operation of tracing one subsys-
tem [12],

EF�rAB� � min
sABM[D

S�rABM jjsABM�

$ min
sAB[D

S�rABjjsAB� .

In general, the loss of the information in the memory may
be regarded as a result of an imperfect classical channel.
This is equivalent to Alice making a nonorthogonal mea-
surement on the memory, and sending the result to Bob.
In the most general case, �Ei � AiA

1
i � is a positive opera-

tor valued measure performed on the memory. The
decomposition corresponding to this measurement is
composed of mixed states, j � �qi , TrM�AirMABA1

i ��,
where qi � Tr�AirMABA1

i �. The relative entropy of
entanglement of the state r

j
MAB, when j is a decomposi-

tion of rAB resulting from a nonorthogonal measurement
on M, defines a class of entanglement measures inter-
polating between the relative entropy of entanglement
and the entanglement of formation of the state rAB.
In the extreme case where the measurement gives no
information about the state rAB, ERE�r

´
A:�BM�� becomes

the relative entropy of entanglement of the state rAB itself.
In between, the measurement gives partial information.
So far, we have shown that the measures interpolating
between entanglement of assistance and entanglement of
formation result from making orthogonal measurements
on preparations of the pure state jcMAB� in different bases.
We note that they may be equally achieved by using the
preparation associated with entanglement of assistance,
and making increasingly nonorthogonal measurements.

The loss of entanglement may be related to the loss of
information in the memory. As we have seen, there are
two stages at which distillable entanglement is lost. The
first is in the conversion of the pure state jcMAB� into a
mixed state rABM . This happens because Alice uses a
classical channel to communicate the memory to Bob.
The second is due to the loss of the memory, M, taking
the state rABM to rAB. The amount of information lost
may be quantified by the difference in mutual information
between the respective states. Mutual information is
a measure of correlations between the memory M and
the system AB, giving the amount of information about
AB which may be obtained from a measurement on
M. The quantum mutual information between M and
AB is defined as IQ�rM:�AB�� � S�rM� 1 S�rAB� 2

S�rMAB�. The mutual information loss in going from
the pure state jcMAB� to the mixed state in Eq. (2) is
DIQ � S�rAB�. There is a corresponding reduction in
the relative entropy of entanglement, from the entangle-
ment of the original pure state, ERE�jc�MA�:B� �c�MA�:Bj�,
to the entanglement of the mixed state ERE�r

´
A:�BM��

for all decompositions ´ arising as the result of an
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orthogonal measurement on the memory. It is possi-
ble to prove, using the nonincrease of relative entropy
under local operations [12], that when the mutual
information loss is added to the relative entropy of
entanglement of the mixed state ERE�r

´
A:�BM��, the result

is greater than the relative entropy of entanglement of
the original pure state, ERE�jc�MA�:B� �c�MA�:Bj� [13].
The strongest case, which occurs when ERE�r

´
A:�BM�� �

EF�rAB�, is

ERE�jc�MA�:B� �c�MA�:Bj� # EF�rAB� 1 S�rAB� . (3)

A similar result may be proved for the second loss, due
to the loss of the memory [13]. Again the mutual infor-
mation loss is DIQ � S�rAB�. The relative entropy of
entanglement is reduced from ERE�r

´
A:�BM��, for any de-

composition ´ resulting from an orthogonal measurement
on the memory, to ERE�rAB�, the relative entropy of en-
tanglement of the state rAB with no memory. When the
mutual information loss is added to ERE�rAB�, the result
is greater than ERE�r

´
A:�BM��. In this case, the result is

strongest for ERE�r
´
A:�BM�� � EA�rAB�:

EA�rAB� # ERE�rAB� 1 S�rAB� . (4)

Notice that if rAB is a pure state, then S�rAB� � 0, and
equality holds. Inequalities (3) and (4) provide lower
bounds for EF�rAB� and ERE�rAB�, respectively. They are
of a form typical of irreversible processes in that restor-
ing the information in M is not sufficient to restore the
original correlations between M and AB. In particular,
they express that the loss of entanglement between Alice
and Bob at each stage must be accompanied by an even
greater reduction in mutual information between the mem-
ory and subsystems AB.

In summary, the relative entropy of entanglement of the
state rAB depends only on the density matrix rAB, and
gives an upper bound to the entanglement of distillation.
The other measures of entanglement, which are given by
relative entropies of an extended system, all depend on how
the information in the memory is used, or how the density
matrix is decomposed. There are numerous decomposi-
tions of any bipartite mixed state into a set of states ri
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with probability pi . The average entanglement of states
in each decomposition is given by the relative entropy of
entanglement of the system extended by a memory whose
orthogonal states are classically correlated to the states of
the decomposition. This correlation records which state ri

any member of an ensemble of mixed states r
≠n
AB is in. It

is available to parties involved in formation of the mixed
state, but is not accessible to parties carrying out distil-
lation. When the classical information is fully available,
different decompositions give rise to different amounts of
distillable entanglement, the highest being entanglement
of assistance and the lowest, entanglement of formation.
If access to the classical record is reduced, the amount of
distillable entanglement is reduced. In the limit where no
information is available, the upper bound to the distillable
entanglement is given by the relative entropy of entangle-
ment of the state rAB itself, without the extension of the
classical memory. Our work shows that relative entropy
of entanglement provides a unifying measure for all cases,
elucidating the role of classical information and the ap-
pearance of irreversibility in manipulations of mixed state
entanglement.
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